Manipulating Ruminal Fermentation: A Microbial Ecological Perspective1
نویسنده
چکیده
The essential role of ruminal microflora in ruminant nutrition provides the potential for improvement in animal production via altering the numbers or activities of specific classes of microorganisms. Successful alterations will be facilitated by an understanding of the microbial ecology of the rumen based on its mechanistic underpinnings. Demonstrated improvements in ruminal fermentation can be traced to their consonance with well-established principles of microbial ecology (niche occupancy, selective pressure, adaptation, and interactions) and the thermodynamics and kinetics of substrate utilization. Application of these principles to several proposed alterations of the ruminal bacterial population allows a prediction of their relative feasibility. Improving fiber digestion, decreasing protein degradation, and detoxifying feed components that are present in low concentrations will be difficult to achieve in the rumen and are best approached by altering the feed, either genetically or with postharvest treatment. By contrast, the detoxification of feed components present in high concentration, and redirection of electron disposal away from methanogenesis, are more productive targets for microbiologi-
منابع مشابه
Redundancy, resilience, and host specificity of the ruminal microbiota: implications for engineering improved ruminal fermentations
The ruminal microbial community is remarkably diverse, containing 100s of different bacterial and archaeal species, plus many species of fungi and protozoa. Molecular studies have identified a "core microbiome" dominated by phyla Firmicutes and Bacteroidetes, but also containing many other taxa. The rumen provides an ideal laboratory for studies on microbial ecology and the demonstration of eco...
متن کاملEffects of Thyme Essential Oil and Disodium Fumarate on Ruminal Fermentation Characteristics, Microbial Population and Nutrient Flow in a Dual Flow Continuous Culture System
The aim of the present study was to investigate the effects of di-sodium fumarate (DSF) and thyme essential oil (TEO) solely and simultaneously on ruminal fermentation properties and microbial abundance. A dual-flow continuous culture system (DFCC) with eight 1400-mL fermenters was used in a period of 12 d that divided to 9 d for adaptation and 3 d for sampling. Fermenters were fed 100 g d...
متن کاملRuminal Methane Emission, Microbial Population and Fermentation Characteristics in Sheep as Affected by Malva sylvestris Leaf Extract: in vitro Study
The objective of this study was to investigate in vitro effect of Malva sylvestris leaf extract (at 0, 25, 50 and 100 µL/30 mL of medium) on sheep ruminal cellulolytic and total viable bacteria growth, protozoa populations, methane production, neutral detergent fiber degradability (NDFD) and fermentation efficiency of oat hay. The addition of Malva sylvestris leaf extract at 25, 50 and 100 µL l...
متن کاملSimultaneous use of thyme essential oil and disodium fumarate can improve in vitro ruminal microbial fermentation characteristics
Two trials were conducted to investigate the effects of disodium fumarate (DSF; 0.00, 8.00, 10.00 and 12.00 mM) and thyme essential oil (TEO; 0.00, 100.00, 200.00, 300.00 and 400.00 µL L-1) solely and simultaneously (10.00 mM DSF along with 100.00, 200.00, 300.00 and 400 µL L-1 TEO) on in vitro ruminal fermentation of a 50:50 alfalfa hay to concentrate diet. The D...
متن کاملHigh Levels of Monensin to Mid Lactating Dairy Cows: Nutrient Digestibility, Ruminal Fermentation and Microbial Protein Synthesis
The aim of this study was to evaluate the nutrient digestibility, ruminal fermentation and microbial protein synthesis of mid-lactating cows fed high dietary levels of monensin. Twelve Holstein cows were distributed into four 3 × 3 latin squares and assigned to the following treatments: control (CON), monensin 24 (M24, addition of 24 mg monensin/kg diet DM) and monensin 48 (M48, addition of 48 ...
متن کامل